Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.116
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612754

RESUMO

Epstein-Barr Virus (EBV) exists in a latent state in 90% of the world's population and is linked to numerous cancers, such as Burkitt's Lymphoma, Hodgkin's, and non-Hodgkin's Lymphoma. One EBV latency protein, latency membrane protein 2A (LMP2A), is expressed in multiple latency phenotypes. LMP2A signaling has been extensively studied and one target of LMP2A is the mammalian target of rapamycin (mTOR). Since mTOR has been linked to reprogramming tumor metabolism and increasing levels of hypoxia-inducible factor 1 α (HIF-1α), we hypothesized that LMP2A would increase HIF-1α levels to enhance ATP generation in B lymphoma cell lines. Our data indicate that LMP2A increases ATP generation in multiple Burkitt lymphoma cell lines that were dependent on HIF-1α. Subsequent studies indicate that the addition of the mTOR inhibitor, rapamycin, blocked the LMP2A-dependent increase in HIF-1α. Further studies demonstrate that LMP2A does not increase HIF-1α levels by increasing HIF-1α RNA or STAT3 activation. In contrast, LMP2A and mTOR-dependent increase in HIF-1α required mTOR-dependent phosphorylation of p70 S6 Kinase and 4E-BP1. These findings implicate the importance of LMP2A in promoting B cell lymphoma survival by increasing ATP generation and identifying potential pharmaceutical targets to treat EBV-associated tumors.


Assuntos
Linfoma de Burkitt , Infecções por Vírus Epstein-Barr , Humanos , Herpesvirus Humano 4 , Proteínas de Membrana , Serina-Treonina Quinases TOR , Trifosfato de Adenosina
2.
Int J Pharm ; : 124117, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38615805

RESUMO

Inflammatory bowel disease (IBD) is a chronic gastrointestinal disorder characterized by immune dysregulation and intestinal inflammation. Rapamycin (Ra), an mTORC1 pathway inhibitor, has shown promise for autophagy induction in IBD therapy but is associated with off-target effects and toxicity. To address these issues, we developed an oral liposome responsive to reactive oxygen species (ROS) using lipids and amphiphilic materials. We combined ketone thiol (TK) for ROS responsive and hyaluronic acid (HA) with high affinity for CD44 receptors to prepare rapamycin-loaded nanoparticle (Ra@TH). Owing to its ROS responsive characteristic, Ra@TH can achieve inflammatory colonic targeting. Additionally, Ra@TH can induce autophagy by inhibiting the mTORC1 pathway, leading to the clearance of damaged organelles, pathogenic microorganisms and oxidative stress products. Simultaneously, it also collaboratively inhibits the NF-κB pathway suppressed by the removal of ROS resulting from TK cleavage, thereby mediating the expression of inflammatory factors. Furthermore, Ra@TH enhances the expression of typical tight junction proteins, synergistically restoring intestinal barrier function. Our research not only expands the understanding of autophagy in IBD treatment but also introduces a promising therapeutic approach for IBD patients.

3.
Adv Biol (Weinh) ; : e2400138, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616173

RESUMO

Yeast is an excellent model organism for research for regulating aging and lifespan, and the studies have made many contributions to date, including identifying various factors and signaling pathways related to aging and lifespan. More than 20 years have passed since molecular biological perspectives are adopted in this research field, and intracellular factors and signal pathways that control aging and lifespan have evolutionarily conserved from yeast to mammals. Furthermore, these findings have been applied to control the aging and lifespan of various model organisms by adjustment of the nutritional environment, genetic manipulation, and drug treatment using low-molecular weight compounds. Among these, drug treatment is easier than the other methods, and research into drugs that regulate aging and lifespan is consequently expected to become more active. Chronological lifespan, a definition of yeast lifespan, refers to the survival period of a cell population under nondividing conditions. Herein, low-molecular weight compounds are summarized that extend the chronological lifespan of Saccharomyces cerevisiae and Schizosaccharomyces pombe, along with their intracellular functions. The low-molecular weight compounds are also discussed that extend the lifespan of other model organisms. Compounds that have so far only been studied in yeast may soon extend lifespan in other organisms.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38561566

RESUMO

Rapamycin is a potent immunosuppressive drug that has been recently proposed for a wide range of applications beyond its current clinical use. For some of these proposed applications, encapsulation in nanoparticles is key to ensure therapeutic efficacy and safety. In this work, we evaluate the effect of pore size on mesoporous silica nanoparticles (MSN) as rapamycin nanocarriers. The successful preparation of MSN with 4 different pore sizes was confirmed by dynamic light scattering, zeta potential, transmission electron microscopy and N2 adsorption. In these materials, rapamycin loading was pore size-dependent, with smaller pore MSN exhibiting greater loading capacity. Release studies showed sustained drug release from all MSN types, with larger pore MSN presenting faster release kinetics. In vitro experiments using the murine dendritic cell (DC) line model DC2.4 showed that pore size influenced the biological performance of MSN. MSN with smaller pore sizes presented larger nanoparticle uptake by DC2.4 cells, but were also associated with slightly larger cytotoxicity. Further evaluation of DC2.4 cells incubated with rapamycin-loaded MSN also demonstrated a significant effect of MSN pore size on their immunological response. Notably, the combination of rapamycin-loaded MSN with an inflammatory stimulus (lipopolysaccharide, LPS) led to changes in the expression of DC activation markers (CD40 and CD83) and in the production of the proinflammatory cytokine TNF-α compared to LPS-treated DC without nanoparticles. Smaller-pored MSN induced more substantial reductions in CD40 expression while eliciting increased CD83 expression, indicating potential immunomodulatory effects. These findings highlight the critical role of MSN pore size in modulating rapamycin loading, release kinetics, cellular uptake, and subsequent immunomodulatory responses.

5.
Front Pharmacol ; 15: 1344113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567351

RESUMO

Introduction: Diabetic kidney disease (DKD) necessitates innovative therapeutic strategies. This study delves into the role of DNA damage-inducing transcription factor 4 (DDIT4) within the VDR-mTOR pathway, aiming to identify a novel target for DKD drug discovery. Methods: Transcriptome data from the Gene Expression Omnibus Database were analyzed to assess the expression of mTOR and VDR expression in human renal tissues. Clinical samples from DKD patients and minimal change disease (MCD) controls were examined, and a DKD animal model using 20-week-old db/db mice was established. DDIT4 plasmid transfection was employed to modulate the VDR-mTOR pathway, with its components evaluated using immunohistochemistry, real-time quantitative PCR (qRT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). Results: Changes in the expression of the VDR-mTOR pathway were observed in both DKD patients and the animal model. Overexpression of DDIT4 increased VDR expression and decreased levels of mTOR, p70s6k, and 4E-BP1. Furthermore, DDIT4 treatment regulated autophagy by upregulating LC3I expression and downregulating LC3II expression. Notably, DDIT4 alleviated oxidative stress by reducing the levels of lipid peroxidation product MDA, while simultaneously increasing the levels of superoxide dismutase (SOD) and glutathione (GSH), underscoring the role of DDIT4 in the pathological process of DKD and its potential as a therapeutic target. Conclusion: Unraveling DDIT4's involvement in the VDR-mTOR pathway provides insights for innovative DKD drug discovery, emphasizing its potential as a therapeutic target for future interventions.

6.
Oral Dis ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569076

RESUMO

OBJECTIVES: Salivary gland injury is one of the most common complications of radiotherapy in head-and-neck cancers. This study investigated the mechanism by which rapamycin prevents irradiation (IR)-induced injury in the parotid glands. MATERIALS AND METHODS: Miniature pigs either received (a) no treatment (NT), (b) IR in the right parotid gland for 5 consecutive days (IR), or intraperitoneal administration of rapamycin (Rap) 1 h prior to IR (IR + Rap). Tissues were collected at three distinct time points (24 h, 4 weeks, and 16 weeks) after IR. Histological analyses, western blot, and real-time reverse transcriptase-polymerase chain reaction were performed to explore the mechanisms of IR-induced injury in the parotid gland. RESULTS: Rapamycin treatment maintained parotid salivary flow 16 weeks post-IR, preserved the number of acinar cells, and reduced parotid tissue fibrosis, as well as reduced apoptosis levels, decreased cleaved caspase-3 expression, and increased the Bcl-2/Bax ratio in the parotid glands. Autophagy marker LC3B was upregulated by rapamycin after IR, while P62 expression was downregulated. Rapamycin reduced the expression of pro-inflammatory factors and the mesenchymal tissue fibrosis following IR. CONCLUSIONS: Rapamycin maintains gland homeostasis after IR by decreasing apoptosis, reducing the expression of pro-inflammatory factors, and enhancing autophagy.

7.
Drug Discov Ther ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38569833

RESUMO

Both PAK1 (RAC/CDC42-activating kinase 1) and TOR (Target of Rapamycin) are among the major oncogenic/ageing kinases. However, they play the opposite role in our immune system, namely immune system is suppressed by PAK1, while it requires TOR. Thus, PAK1-blockers, would be more effective for therapy of cancers, than TOR-blockers. Since 2015 when we discovered genetically that PDGF-induced melanogenesis depends on "PAK1", we are able to screening a series of PAK1-blockers as melanogenesis-inhibitors which could eventually promote longevity. Interestingly, rapamycin, the first TOR-inhibitor, promotes melanogenesis, clearly indicating that TOR suppresses melanogenesis. However, a new TOR-inhibitor called TORin-1 no longer suppresses immune system, and blocks melanogenesis in cell culture. These observations strongly indicate that TORin-1 acts as PAK1-blockers, instead of TOR-blockers, in vivo. Thus, it is most likely that melanogenesis in cell culture could enable us to discriminate PAK1-blockers from TORblockers.

8.
Plant Physiol ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593032

RESUMO

Trehalose 6-phosphate (Tre6P) is an essential signal metabolite that regulates the level of sucrose, linking growth and development to the metabolic status. We hypothesized that Tre6P plays a role in mediating the regulation of gene expression by sucrose. To test this, we performed transcriptomic profiling on Arabidopsis (Arabidopsis thaliana) plants that expressed a bacterial TREHALOSE 6-PHOSPHATE SYNTHASE (TPS) under the control of an ethanol-inducible promoter. Induction led to a 4-fold rise in Tre6P levels, a concomitant decrease in sucrose, significant changes (FDR ≤ 0.05) of over 13,000 transcripts, and two-fold or larger changes of over 5000 transcripts. Comparison with nine published responses to sugar availability allowed some of these changes to be linked to the rise in Tre6P, while others were probably due to lower sucrose or other indirect effects. Changes linked to Tre6P included repression of photosynthesis-related gene expression and induction of many growth-related processes including ribosome biogenesis. About 500 starvation-related genes are known to be induced by SUCROSE-NON-FERMENTING-1-RELATED KINASE 1 (SnRK1). They were largely repressed by Tre6P in a manner consistent with SnRK1 inhibition by Tre6P. SnRK1 also represses many genes that are involved in biosynthesis and growth. These responded to Tre6P in a more complex manner, pointing toward Tre6P interacting with other C-signaling pathways. Additionally, elevated Tre6P modified the expression of genes encoding regulatory subunits of the SnRK1 complex and TPS class II and FCS-LIKE ZINC FINGER proteins that are thought to modulate SnRK1 function and genes involved in circadian, TARGET OF RAPAMYCIN-, light, abscisic acid, and other hormone signaling.

9.
J Alzheimers Dis ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38640155

RESUMO

Background: Alzheimer's disease (AD), the most common form of dementia, remains long-term and challenging to diagnose. Furthermore, there is currently no medication to completely cure AD patients. Rapamycin has been clinically demonstrated to postpone the aging process in mice and improve learning and memory abilities in animal models of AD. Therefore, rapamycin has the potential to be significant in the discovery and development of drugs for AD patients. Objective: The main objective of this systematic review and meta-analysis was to investigate the effects and mechanisms of rapamycin on animal models of AD by examining behavioral indicators and pathological features. Methods: Six databases were searched and 4,277 articles were retrieved. In conclusion, 13 studies were included according to predefined criteria. Three authors independently judged the selected literature and methodological quality. Use of subgroup analyses to explore potential mechanistic effects of rapamycin interventions: animal models of AD, specific types of transgenic animal models, dosage, and periodicity of administration. Results: The results of Morris Water Maze (MWM) behavioral test showed that escape latency was shortened by 15.60 seconds with rapamycin therapy, indicating that learning ability was enhanced in AD mice; and the number of traversed platforms was increased by 1.53 times, indicating that the improved memory ability significantly corrected the memory deficits. CONCLUSIONS: Rapamycin therapy reduced age-related plaque deposition by decreasing AßPP production and down-regulating ß-secretase and γ-secretase activities, furthermore increased amyloid-ß clearance by promoting autophagy, as well as reduced tau hyperphosphorylation by up-regulating insulin-degrading enzyme levels.

10.
Neurochem Int ; : 105746, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641027

RESUMO

PURPOSE: Epilepsy is a chronic brain dysfunction characterized by recurrent epileptic seizures. Rapamycin is a naturally occurring macrolide from Streptomyces hygroscopicus, and rapamycin may provide a protective effect on the nervous system by affecting mTOR. Therefore, we investigated the pharmacologic mechanism of rapamycin treating epilepsy through bioinformatics analysis, cellular experiments and supercomputer simulation. METHODS: Bioinformatics analysis was used to analyze targets of rapamycin treating epilepsy. We established epilepsy cell model by HT22 cells. RT-qPCR, WB and IF were used to verify the effects of rapamycin on mTOR at gene level and protein level. Computer simulations were used to model and evaluate the stability of rapamycin binding to mTOR protein. RESULTS: Bioinformatics indicated mTOR played an essential role in signaling pathways of cell growth and cell metabolism. Cellular experiments showed that rapamycin could promote cell survival, and rapamycin did not have an effect on mRNA expression of mTOR. However, rapamycin was able to significantly inhibit the phosphorylation of mTOR at protein level. Computer simulations indicated that rapamycin was involved in the treatment of epilepsy through regulating phosphorylation of mTOR at protein level. CONCLUSION: We found that rapamycin was capable of promoting the survival of epilepsy cells by inhibiting the phosphorylation of mTOR at protein level, and rapamycin did not have an effect on mRNA expression of mTOR. In addition to the traditional study that rapamycin affects mTORC1 complex by acting on FKBP12, this study found rapamycin could also directly block the phosphorylation of mTOR, therefore affecting the assembly of mTORC1 complex and mTOR signaling pathway.

11.
J Exp Bot ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642398

RESUMO

Plant growth depends on sugar production and export by photosynthesising source leaves and sugar allocation and import by sink tissues (grains, roots, stems, young leaves). Photosynthesis and sink demand are tightly coordinated through metabolic (substrate, allosteric) feedback and signalling (sugar, hormones) mechanisms. Sugar signalling integrates sugar production with plant development and environmental cues. In C3 plants (e.g., wheat, rice), it is well documented that sugar accumulation in source leaves, due to source-sink imbalance, negatively feedbacks on photosynthesis and plant productivity. However, we have a limited understanding about the molecular mechanisms underlying those feedback regulations, especially in C4 plants (e.g., maize, sorghum, sugarcane). Recent work with the C4 model Setaria viridis suggested that C4 leaves have different sugar sensing thresholds and behaviours relative to C3 counterparts. Addressing this research priority is critical because improving crop yield requires a better understanding of how plants coordinate source activity with sink demand. Here we review the literature, present a model of action for sugar sensing in C4 source leaves and suggest ways forward.

12.
Front Plant Sci ; 15: 1354561, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562561

RESUMO

Cell cycle involves the sequential and reiterative progression of important events leading to cell division. Progression through a specific phase of the cell cycle is under the control of various factors. Since the cell cycle in multicellular eukaryotes responds to multiple extracellular mitogenic cues, its study in higher forms of life becomes all the more important. One such factor regulating cell cycle progression in plants is sugar signalling. Because the growth of organs depends on both cell growth and proliferation, sugars sensing and signalling are key control points linking sugar perception to regulation of downstream factors which facilitate these key developmental transitions. However, the basis of cell cycle control via sugars is intricate and demands exploration. This review deals with the information on sugar and TOR-SnRK1 signalling and how they manoeuvre various events of the cell cycle to ensure proper growth and development.

13.
Cureus ; 16(3): e56562, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38646331

RESUMO

BACKGROUND: Acne vulgaris (AV) is an inflammatory skin disease caused by the mechanistic target of rapamycin complex 1 (mTORC1). forkhead box protein (Fox) O1 is known to regulate the relationship between the mTORC1 signaling pathway and insulin resistance (IR). Increased mTORC1 signaling is known to predispose one to diseases such as insulin resistance (IR), obesity, and diabetes mellitus. One of the major components of mTORC1 is mTOR. FoxO1 and mTOR play key roles in the onset and progression of metabolic syndrome (MetS). In this study, we aimed to elucidate the relationship between AV and MetS through FoxO1 and mTOR signaling pathways and microRNAs (miRs) associated with these signaling pathways. METHODS: We examined 20 AV patients without MetS, 16 AV patients with MetS, and 20 healthy controls. The demographic characteristics of the patients, MetS parameters, clinical severity of AV (Global Acne Grading System, GAGS), and the homeostasis model assessment (HOMA) values were compared between the groups. In addition, the expression levels of FoxO1 and mTOR genes, along with the expression levels of miR-21, miR-29b, and miR-98, were assessed in skin biopsy samples from all groups using real-time polymerase chain reaction methods. FoxO1, mTOR, and miRNA expression levels were recorded as fold change. RESULTS: The mean age of patients with AV without MetS was statistically lower. In AV patients with MetS, those with moderate GAGS scores had statistically significantly higher HOMA values than those with mild GAGS scores. FoxO1 expression was significantly lower in AV patients compared to controls. The mTOR expression levels of AV patients with MetS were significantly higher than the other two groups. The expression levels of miR-21 and miR-29b were significantly increased in the group of AV patients with MetS compared to the group of AV patients without MetS. CONCLUSIONS: These results suggested that the mTOR pathway may play an important role in explaining the relationship between AV and MetS in acne pathogenesis. They also suggested that miR-21 and miR-29b play a role in the inflammatory process of AV.

14.
Biol Direct ; 19(1): 26, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582839

RESUMO

Ischemic stroke is a sudden and acute disease characterized by neuronal death, increment of reactive gliosis (reactive microglia and astrocytes), and a severe inflammatory process. Neuroinflammation is an early event after cerebral ischemia, with microglia playing a leading role. Reactive microglia involve functional and morphological changes that drive a wide variety of phenotypes. In this context, deciphering the molecular mechanisms underlying such reactive microglial is essential to devise strategies to protect neurons and maintain certain brain functions affected by early neuroinflammation after ischemia. Here, we studied the role of mammalian target of rapamycin (mTOR) activity in the microglial response using a murine model of cerebral ischemia in the acute phase. We also determined the therapeutic relevance of the pharmacological administration of rapamycin, a mTOR inhibitor, before and after ischemic injury. Our data show that rapamycin, administered before or after brain ischemia induction, reduced the volume of brain damage and neuronal loss by attenuating the microglial response. Therefore, our findings indicate that the pharmacological inhibition of mTORC1 in the acute phase of ischemia may provide an alternative strategy to reduce neuronal damage through attenuation of the associated neuroinflammation.


Assuntos
Isquemia Encefálica , Microglia , Camundongos , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina , Doenças Neuroinflamatórias , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/genética , Serina-Treonina Quinases TOR/uso terapêutico , Isquemia , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Mamíferos
15.
BMC Neurol ; 24(1): 111, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575854

RESUMO

BACKGROUND: Rapamycin is an inhibitor of the mechanistic target of rapamycin (mTOR) protein kinase, and preclinical data demonstrate that it is a promising candidate for a general gero- and neuroprotective treatment in humans. Results from mouse models of Alzheimer's disease have shown beneficial effects of rapamycin, including preventing or reversing cognitive deficits, reducing amyloid oligomers and tauopathies and normalizing synaptic plasticity and cerebral glucose uptake. The "Evaluating Rapamycin Treatment in Alzheimer's Disease using Positron Emission Tomography" (ERAP) trial aims to test if these results translate to humans through evaluating the change in cerebral glucose uptake following six months of rapamycin treatment in participants with early-stage Alzheimer's disease. METHODS: ERAP is a six-month-long, single-arm, open-label, phase IIa biomarker-driven study evaluating if the drug rapamycin can be repurposed to treat Alzheimer's disease. Fifteen patients will be included and treated with a weekly dose of 7 mg rapamycin for six months. The primary endpoint will be change in cerebral glucose uptake, measured using [18F]FDG positron emission tomography. Secondary endpoints include changes in cognitive measures, markers in cerebrospinal fluid as well as cerebral blood flow measured using magnetic resonance imaging. As exploratory outcomes, the study will assess change in multiple age-related pathological processes, such as periodontal inflammation, retinal degeneration, bone mineral density loss, atherosclerosis and decreased cardiac function. DISCUSSION: The ERAP study is a clinical trial using in vivo imaging biomarkers to assess the repurposing of rapamycin for the treatment of Alzheimer's disease. If successful, the study would provide a strong rationale for large-scale evaluation of mTOR-inhibitors as a potential disease-modifying treatment in Alzheimer's disease. TRIAL REGISTRATION: ClinicalTrials.gov ID NCT06022068, date of registration 2023-08-30.


Assuntos
Doença de Alzheimer , Transtornos Cognitivos , Animais , Camundongos , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/complicações , Envelhecimento , Tomografia por Emissão de Pósitrons/métodos , Glucose/metabolismo , Serina-Treonina Quinases TOR , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Ensaios Clínicos Fase II como Assunto
16.
J Clin Immunol ; 44(4): 94, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578569

RESUMO

PURPOSE: Deficiency of stromal interaction molecule 1 (STIM1) results in combined immunodeficiency accompanied by extra-immunological findings like enamel defects and myopathy. We here studied a patient with a STIM1 loss-of-function mutation who presented with severe lymphoproliferation. We sought to explore the efficacy of the mTOR inhibitor rapamycin in controlling disease manifestations and reversing aberrant T-cell subsets and functions, which has never been used previously in this disorder. METHODS: Clinical findings of the patient were collected over time. We performed immunological evaluations before and after initiation of rapamycin treatment, including detailed lymphocyte subset analyses, alterations in frequencies of circulating T follicular helper (cTFH) and regulatory T (Treg) cells and their subtypes as well as T cell activation and proliferation capacities. RESULTS: A novel homozygous exon 2 deletion in STIM1 was detected in a 3-year-old girl with severe lymphoproliferation, recurrent infections, myopathy, iris hypoplasia, and enamel hypoplasia. Lymphoproliferation was associated with severe T-cell infiltrates. The deletion resulted in a complete loss of protein expression, associated with a lack of store-operated calcium entry response, defective T-cell activation, proliferation, and cytokine production. Interestingly, patient blood contained fewer cTFH and increased circulating follicular regulatory (cTFR) cells. Abnormal skewing towards TH2-like responses in certain T-cell subpopulations like cTFH, non-cTFH memory T-helper, and Treg cells was associated with increased eosinophil numbers and serum IgE levels. Treatment with rapamycin controlled lymphoproliferation, improved T-cell activation and proliferation capacities, reversed T-cell responses, and repressed high IgE levels and eosinophilia. CONCLUSIONS: This study enhances our understanding of STIM1 deficiency by uncovering additional abnormal T-cell responses, and reveals for the first time the potential therapeutic utility of rapamycin for this disorder.


Assuntos
Doenças Musculares , Sirolimo , Feminino , Humanos , Pré-Escolar , Molécula 1 de Interação Estromal/genética , Subpopulações de Linfócitos T , Imunoglobulina E , Proteínas de Neoplasias
17.
Pediatr Cardiol ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480570

RESUMO

Cardiac rhabdomyomas are the most common benign pediatric heart tumor in infancy, which are commonly associated with tuberous sclerosis complex (TSC). Most rhabdomyomas are asymptomatic and spontaneously regress over time. However, some cases especially in neonates or small infants can present with hemodynamic instability. Surgical resection of the tumor, which has been the gold standard in alleviating obstruction, is not always possible and may be associated with significant morbidity and mortality. Recently, mammalian target of rapamycin inhibitors (mTORi) have been shown to be safe and effective in the treatment of TSC. We present the outcomes of neonates and an infant who received treatment for symptomatic rhabdomyomas at a tertiary cardiology center. Medical records were reviewed to obtain clinical, demographic, and outcome data. Six patients received interventions for symptomatic rhabdomyomas, median age at presentation was 1 day old (range from 1 to 121 days old), and 67% of the patients had a pathogenic mutation in TSC gene. One patient underwent surgical resection of solitary tumor at right ventricular outflow tract (RVOT) successfully. In the four patients with left ventricular outflow tract (LVOT) obstruction, two patients received combined therapy of surgical debulking of LVOT tumor, Stage I palliation procedure, and mTORi and two patients received mTORi therapy. One patient with RVOT obstruction underwent ductal stenting and received synergistic mTORi. Four of the five patients had good response to mTORi demonstrated by the rapid regression of rhabdomyoma size. 83% of patients are still alive at their latest follow-up, at two to eight years of age. One patient died on day 17 post-LVOT tumor resection and Hybrid stage one due to failure of hemostasis, in the background of familial factor VII deficiency. Treatment of symptomatic rhabdomyoma requires individualized treatment strategy based on the underlying pathophysiology, with involvement of multidisciplinary teams. mTORi is effective and safe in inducing rapid regression of rhabdomyomas. A standardized mTORi prescription and monitoring guide will ensure medication safety in neonates and infants with symptomatic cardiac rhabdomyoma. Although the majority of tumors responded to mTORi, some prove to be resistant. Further studies are warranted, ideally involving multiple international centers with a larger number of patients.

18.
Exp Parasitol ; 260: 108746, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38513972

RESUMO

In Dermanyssus gallinae, a hematophagous mite, the initiation of vitellogenesis induced by blood feeding is essential for its reproduction. However, the precise gene structures and physiological functions of Vg in D. gallinae and its upstream gene, Target of Rapamycin (TOR), have not been fully understood. This study revealed the presence of four homologous genes within D. gallinae, named Dg-Vg1, Dg-Vg1-like, Dg-Vg2, and Dg-Vg2-like, especially, Dg-Vg2-like was firstly identified in the mites. The expression levels of all these Vg genes were significantly higher in adult females than other stages. Following blood feeding, the expression levels of these genes increased significantly, followed by a subsequent decrease, aligning with egg production. Silencing Dg-Vgs by RNA interference (RNAi) led to decreased fecundity and egg hatching rates, as well as abnormal embryonic development, suggesting a vital role for Dg-Vgs in both egg formation and embryonic development. Furthermore, the knockdown of Dg-TOR significantly reduced the expression of Dg-Vgs and negatively impacted the reproductive capabilities of PRMs, indicating that TOR influences PRM reproduction by regulating the expression of Dg-Vgs. In summary, these findings demonstrated the crucial roles of Dg-Vgs and Dg-TOR in PRM reproduction, highlighting their potential as targets for pest control.

19.
Pharmacol Res ; : 107150, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38521285

RESUMO

Cancer, with its diversity, heterogeneity, and complexity, is a significant contributor to global morbidity, disability, and mortality, highlighting the necessity for transformative treatment approaches. Photodynamic therapy (PDT) has aroused continuous interest as a viable alternative to conventional cancer treatments that encounter drug resistance. Nanotechnology has brought new advances in medicine and has shown great potential in drug delivery and cancer treatment. For precise and efficient therapeutic utilization of such a tumor therapeutic approach with high spatiotemporal selectivity and minimal invasiveness, the carrier-free noncovalent nanoparticles (NPs) based on chemo-photodynamic combination therapy is essential. Utilizing natural products as the foundation for nanodrug development offers unparalleled advantages, including exceptional pharmacological activity, easy functionalization/modification, and well biocompatibility. The natural-product-based, carrier-free, noncovalent NPs revealed excellent synergistic anticancer activity in comparison with free photosensitizers and free bioactive natural products, representing an alternative and favorable combination therapeutic avenue to improve therapeutic efficacy. Herein, a comprehensive summary of current strategies and representative application examples of carrier-free noncovalent NPs in the past decade based on natural products (such as paclitaxel, 10-hydroxycamptothecin, doxorubicin, etoposide, combretastatin A4, epigallocatechin gallate, and curcumin) for tumor chemo-photodynamic combination therapy. We highlight the insightful design and synthesis of the smart carrier-free NPs that aim to enhance PDT efficacy. Meanwhile, we discuss the future challenges and potential opportunities associated with these NPs to provide new enlightenment, spur innovative ideas, and facilitate PDT-mediated clinical transformation.

20.
Int Immunopharmacol ; 132: 111910, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552295

RESUMO

Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is one of the most prevalent forms of autoimmune encephalitis, characterized by a series of neurological and psychiatric symptoms, including cognitive impairment, seizures and psychosis. The underlying mechanism of anti-NMDAR encephalitis remains unclear. In the current study, the mouse model of anti-NMDAR encephalitis with active immunization was performed. We first uncovered excessive mitochondrial fission in the hippocampus and temporal cortex of anti-NMDAR encephalitis mice, indicated by elevated level of Phospho-DRP1 (Ser616) (p-Drp1-S616). Moreover, blockade of the autophagic flux was also demonstrated, leading to the accumulation of fragmented mitochondria, and elevated levels of mitochondrial reactive oxygen species (mtROS) and mitochondrial DNA (mtDNA) in anti-NMDAR encephalitis. More importantly, we found that the mTOR signaling pathway was overactivated, which could aggravate mitochondrial fission and inhibit autophagy, resulting in mitochondrial dysfunction. While rapamycin, the specific inhibitor of the mTOR signaling pathway, significantly alleviated mitochondrial dysfunction by inhibiting mitochondrial fission and enhancing autophagy. Levels of mtROS and mtDNA were markedly reduced after the treatment of rapamycin. In addition, rapamycin also significantly alleviated cognitive dysfunction and anxious behaviors found in anti-NMDAR encephalitis mice. Thus, our study reveals the vital role of mitochondrial dysfunction in pathological mechanism of anti-NMDAR encephalitis and lays a theoretical foundation for rapamycin to become a clinically targeted drug for anti-NMDAR encephalitis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...